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БАГАТОКРИТЕРІАЛЬНА ПАРАМЕТРИЧНА ОПТИМІЗАЦІЯ СТІЙКОСТІ 
ОБОЛОНКИ МІНІМАЛЬНОЇ ПОВЕРХНІ НА КРУГЛОМУ КОНТУРІ, ЯКА 

СКЛАДАЄТЬСЯ ІЗ ДВОХ ПОХИЛИХ ЕЛІПСІВ З УРАХУВАННЯМ 
ГЕОМЕТРИЧНОЇ НЕЛІНІЙНОСТІ ПРИ ТЕРМОСИЛОВОМУ 

НАВАНТАЖЕННІ 
 
Оптимальне проектування несучих конструкцій на чотири основні види: 

параметричне, топологічне, оптимізація форми, створення композитних 
матеріалів для реалізації певної задачі. Можуть бути варіанти комбінації двох і 
більше видів оптимізації на одному досліджуваному об’єкті. В даній наукові 
публікації розглядається два види оптимального проектування на одному 
досліджуваному об’єкті. 

Оболонка мінімальної поверхні – це тонкостінна просторова конструкція, яка 
має заданий контур та певну з певною заданою висотою яке згодом було 
побудовані за допомогою методу продовження по параметру. Метод продовження 
по параметру дає можливість побудувати оптимальну форму майбутньої 
оболонки мінімальної поверхні, що дає можливість мінімізувати значення 
внутрішніх зусиль, які в свою чергу зменшують напруження по Мізесу, яке 
розкладаються на нормальне та тангенціальне, що призводить до зменшення 
товщини оболонки.  

Оптимальне проектування несучих конструкцій на чотири основні види: 
параметричне, топологічне, оптимізація форми, створення композитних 
матеріалів для реалізації певної задачі. Можуть бути варіанти комбінації двох і 
більше видів оптимізації на одному досліджуваному об’єкті. 

Багатокритеріальна параметрична оптимізації оболонки мінімальної поверхні 
проводиться в автоматизованому режимі в програмному комплексі Femap with 
Nastran та підключеного власного програмного забезпечення, яке розроблювався під 
певний напрям науково-технічної діяльності в межах прикладних досліджень. 

Приведено теоретичне формулювання співвідношення втрати стійкості 
оболонки мінімальної поверхні на круглому плані з урахуванням геометричної 
нелінійності при термосиловому навантаженні. 

Після оптимізаційного розрахунку виходячи з огляду на рис. 2-11 після 
оптимізаційного розрахунку перша форма втрати стійкості становить λ=1, що 
відповідає мінімальної межі перед втратою стійкості. 

На графіку 13 показано зміну цільових функцій, вдалося зменшити вагу на 8.8 
т, що становить 23%, при цьому відбулося зменшення коефіцієнта  λ з 5.36 до 1.01, 
що фактично в 6 разів менше. Цей розрахунок дає можливість мінімальну товщину 
оболонки мінімальної поверхні перед втратою стійкості.   

Ключові слова: стійкість оболонки, багатокритеріальна параметрична 

оптимізація, оболонка мінімальної поверхні, розрахунок стійкості оболонки, 
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геометрична нелінійність, нелінійність, МСЕ, силові навантаження, статичні 

навантаження, метод скінченних елементів. 
 
Вступ. Для раціонального використання будівельних матеріал при 

проектуванні будь-якої будівлі чи споруди складається замовником з ГІПом та 
ГАПом проекту технічне завдання. Технічне завдання на проєктування це 
документ, який окреслює з власного досвіду проектувальників використання того 
чи іншого матеріалу для реалізації проекту в цілому. До несучих конструкцій це 
можуть бути відноситися основні матеріали такі як бетон, сталь, дерево. Вибір 
несучих матеріалів для побудови каркасних чи промислових будівель і споруд 
ґрунтуються на власних вподобань проектувальників та замовника, а також на 
попередній оцінці техніко-економічних показників. З розвитком ЕОМ та ПК 
з’явилася можливість використовувати оптимальне проектування несучих 
будівельних конструкцій [1]. 

Оптимальне проектування несучих конструкцій на чотири основні види: 
параметричне, топологічне, оптимізація форми, створення композитних матеріалів 
для реалізації певної задачі. Можуть бути варіанти комбінації двох і більше видів 
оптимізації на одному досліджуваному об’єкті [2]. В даній наукові публікації 
розглядається два види оптимального проектування на одному досліджуваному 
об’єкті. Оболонка мінімальної поверхні – це тонкостінна просторова конструкція, 
яка має заданий контур та певну з певною заданою висотою яке згодом було 
побудовані за допомогою методу продовження по параметру [14]. Метод 
продовження по параметру [3] дає можливість побудувати оптимальну форму 
майбутньої оболонки мінімальної поверхні, що дає можливість мінімізувати 
значення внутрішніх зусиль, які в свою чергу зменшують напруження по Мізесу, 
яке розкладаються на нормальне та тангенціальне, що призводить до зменшення 
товщини оболонки. Є важливий фактор зовнішнього навантаження, в даній наукові 
роботі розглядається термосилове навантаження, яке є досить суттєвим для даних 
видів конструкції [4].  

Багатокритеріальна параметрична оптимізації оболонки мінімальної поверхні 
проводиться в автоматизованому режимі в програмному комплексі Femap with 
Nastran та підключеного власного програмного забезпечення, яке розроблювався 
під певний напрям науково-технічної діяльності в межах прикладних досліджень 
[5]. Власне програмне забезпечення дає можливість підключатися до програмного 
комплексу Femap with Nastran та використовувати певний функціонал, а саме: 
цільові функції, призначення на скінченні елементи певних властивостей property, 
а також змогу запускати певні види розрахунку і при цьому оптимізувати результат 
на певні ітерації, які закладені як вхідні данні, або розрахунок раніше зупиняється 
коли обмеження відповідають результату аналізу [6]. 

До цільових функцій відносяться у власному програмному комплексі: вага, 
напруження, вага і напруження, вага і переміщення, вага і стійкість. В даній 
науковій публікації відображається дослідження багатокритеріальної 
параметричною оптимізацією вага і стійкість [7]. Стійкість в даному випадку 
досліджується через коефіцієнт λ, яка повинна дорівнювати не менше одиниці, так 
як після цього відбувається втрата стійкості. В процесі досліджування 
оптимального розрахунку коефіцієнт λ втрати стійкості оболонки мінімальної 
поверхні досліджується в кожному скінченному елементі. Програмний комплекс і 
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власне програмне забезпечення дає можливість видавати товщину оболонки 
мінімальної поверхні мінімальну перед втратою стійкості, що визначається та 
перевіряється в кожному скінченному елементу коефіцієнту λ=1 [8]. Перша 
наступає місцева втрата стійкості, після цього, якщо товщина далі зменшується 
наступає глобальна втрата стійкості оболонки мінімальної поверхні. 

Підхід з урахуванням оптимального проектування дає можливість від геометрії 
та зовнішнього навантаження підібрати: матеріал, тип конструкції, товщину 
поперечного перерізу, а також автоматизувати весь цей процес. З точки зору 
будівельної і прикладної механіки даний науковий напрям створює певну цікавіть, 
але розвиток її іде досить повільно, тому що поки на законодавчому рівні 
застосування принципів оптимального проектування не знаходять відгуку у 
державних процесах побудови будівель і споруд різного призначення [9]. На 
теперішній стан розвитку даної наукової області приводить до розвитку 
оптимального проектування де застосовуються дві і більше цільові функції 
параметричної оптимізації, а також комбінацією типів оптимального проектування 
на одному досліджуваному об’єкті, які в свою чергу можуть давати економію 
форми конструкції, параметри конструкції, топологію конструкції. 

Проблема оптимізації стійкості оболонок досить не вивчена, перед початком 
оптимізаційного розрахунку відбувається перевірка всіх станів конструкції та 
власних значень коефіцієнту λ втрати стійкості. Важливим фактором є геометрична 
нелінійність, її використання обумовлено визначення дійсних прогинів оболонки 
мінімальної поверхні під час оптимізаційного розрахунку, що свою чергу дає 
додатковий критерій оптимальності у вигляді 3-5%. 

Теоретичні відомості розрахунку стійкості тонких оболонок з урахуванням 

геометричної нелінійності. Важливе питання проблем будівельної і прикладної 
механіки становлять задачі геометричної нелінійності. Нелінійність 
диференціальних рівнянь не допомагає застосовувати аналітичні підходи, що 
обумовлює необхідність використання чисельних методів таких як метод 
скінченних елементів (МСЕ). Для даних задач метод скінчених елементів 
досліджений в задачах ізотропних тіл.  

Геометрично нелінійні задачі використовують в основному для формулювання 
задач стійкості конструкції. В більшості випадків проблему стійкості вдається 
вирішити, якщо звести її до лінійної постановки при власних коливаннях.  

Геометрично нелінійні називають задачі теорії пружності в яких враховується 
нелінійність в залежності від деформацій і переміщень, в той час як напруження і 
деформації пов’язані лінійно. Врахування нелінійних складових деформацій 
необхідно для розрахунку гнучких тонкостінних конструкцій. 

Деформації тіла представлені:  

𝜀 = 𝜀̅ + 𝜀̃.                                                             (1) 

які пов’язані з переміщеннями наступним чином: 

𝜀̅ = 𝑅𝑢⃗ ,    𝛾̃𝑖𝑗 = 2𝜀𝑖̃𝑗 .                                            (2) 

𝜀𝑖̃𝑗 =
1

2

𝜕𝑢𝑇⃗⃗ ⃗⃗  

𝜕𝑥𝑖

𝜕𝑢⃗⃗ ⃗⃗  

𝜕𝑥𝑗
.                                                      (3) 
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При дії об’ємних сил 𝐹  і розповсюджених по поверхні тіла 𝑆2 зусиль 𝑝∗⃗⃗⃗⃗   в тілі 

виникають напруження 𝜎𝑇 = {𝜎𝑥𝜎𝑦𝜎𝑧𝜏𝑥𝑦𝜏𝑦𝑧𝜏𝑧𝑥}, які пов’язані з деформаціями 

пружного тіла узагальненим законом Гука: 

𝜎 = 𝐷𝜀 = 𝐷𝜀̅ + 𝐷𝜀̃.                                              (4) 

Потенційне енергія тіла включає роботу зовнішніх сил і енергію деформації: 

П𝐿(𝑢⃗ ) =
1

2
∫ 𝜎𝑇𝜀𝑑𝑉 − ∫ 𝑢𝑇⃗⃗ ⃗⃗  𝐹 𝑑𝑉

𝑉𝑉

− ∫ 𝑢⃗ 𝑝∗⃗⃗⃗⃗ 𝑑𝑆

𝑆2

= 

=
1

2
∫ 𝜎𝑇𝜀𝑑̅𝑉

𝑉

+
1

2
∫ 𝜎𝑇𝜀̃𝑑𝑉

𝑉

− ∫ 𝑢𝑇⃗⃗ ⃗⃗  𝐹 

𝑉

− ∫ 𝑢⃗ 𝑝∗⃗⃗⃗⃗ 𝑑𝑆

𝑆2

.                   (5) 

Згідно варіаційного принципу Лагранжа серед всіх допустимих переміщень 
тіла, які реалізовані і які приводять потенційну енергію (5) до мінімального 
значення. 

Розіб’ємо тіло на множену скінченних елементів і розглянемо один із них 
об’ємом 𝑉. Переміщення, деформації і напруження будемо апроксимувати 
наступним чином: 

𝑢⃗ = 𝑁1𝑢1⃗⃗⃗⃗ + ⋯+ 𝑁𝑚𝑢𝑚⃗⃗ ⃗⃗  ⃗ = 𝑁{𝑢}, 

𝜀̅ = 𝑅𝑢⃗ = 𝐵1𝑢1⃗⃗⃗⃗ + ⋯+ 𝐵𝑚𝑢𝑚⃗⃗ ⃗⃗  ⃗ = 𝐵{𝑢}, 

𝜀𝑖̃𝑗 =
1

2
{𝑢}𝑇

𝜕𝑁𝑇

𝜕𝑥𝑖

𝜕𝑁

𝜕𝑥𝑗

{𝑢} =
1

2
{𝑢}𝑇𝐺𝑖𝑗{𝑢}, 

𝜎 = 𝐷(𝐵1𝑢1 + ⋯+ 𝐵𝑚𝑢𝑚 + 𝜀̃) = 𝐷(𝐵{𝑢} + 𝜀̃)                     (6) 

де  𝑁𝑗 – Базисні функції скінченого елемента 𝑢𝑖⃗⃗  ⃗ – вектора вузлових переміщень 

і-го вузла N (3x3m), B (6x3m) – матриці базисних функцій і деформацій 𝐺𝑖𝑗 (3m x 

3m) – матриці нелінійних деформацій, конкретні вирази для яких будуть приведені 
нижче [10]. Після постановки останніх виразів функціонал (5) перетворюється у 
функцію вузлових переміщень, який має наступний вигляд: 

П𝐿({𝑢}) =
1

2
{𝑢}𝑇 ∫ 𝐵𝑇𝐷𝐵𝑑𝑉

𝑉

{𝑢} + {𝑢}𝑇 ∫ 𝐵𝑇𝐷𝜀̃𝑑𝑉 +

𝑉

 

+
1

2
∫ 𝜀̃𝑇𝐷𝜀̃𝑑𝑉 − {𝑢}𝑇 ∫ 𝑁𝑇𝐹 

𝑉

𝑑𝑉 −

𝑉

{𝑢}𝑇 ∫ 𝑁𝑇𝑝∗⃗⃗⃗⃗ 

𝑆𝑠

𝑑𝑆 = 

1

2
{𝑢}𝑇𝐾{𝑢} − {𝑢}𝑇{𝑄} + {𝑢}𝑇 ∫ 𝐵𝑇𝐷𝜀̃𝑑𝑉 +

1

2
∫ 𝜀̃𝑇𝐷𝜀̃𝑑𝑉.

𝑉𝑉

              (7) 

де 𝐾 (3m x 3m) – матриця жорсткості скінченного елемента; {𝑄} (3m x 1) – 
вектор вузлових навантажень. Вирішуючи рівняння для одного скінченного 
елемента визначається з умов мінімуму цієї функції, яке приводить до системи 
нелінійних алгебраїчних рівнянь:  
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𝜕П𝐿

𝜕{𝑢}
= 𝐾{𝑢} − {𝑄} + {𝑄̃({𝑢})} = 0.                                 (8) 

Вектор додаткових вузлових сил 𝑄̃, обумовлений врахуванням нелінійних 
деформацій і нелійнійно залежних від вузлових переміщень, має наступний вигляд: 

{𝑄̃({𝑢})} =
𝜕

𝜕{𝑢}
({𝑢}𝑇 ∫ 𝐵𝑇𝐷𝜀̃𝑑𝑉 +

1

2
∫ 𝜀̃𝑇𝐷𝜀̃𝑑𝑉

𝑉𝑉

) = 

= ∫ 𝐵𝑇𝐷𝜀̃𝑑𝑉 + ∫
𝜕𝜀̃𝑇

𝜕{𝑢}
𝑉𝑉

𝐷𝐵𝑑𝑉{𝑢} + ∫
𝜕𝜀̃𝑇

𝜕{𝑢}
𝑉

𝐷𝜀̃𝑑𝑉.                   (9) 

Об’єднання системи рівнянь (8) для множини скінченних елементів приводить 
до системи нелінійних алгебраїчних рівнянь для повної скінчено-елементної моделі 
тіла: 

[𝐾][𝑈] = [𝑄] − [𝑄̃([𝑈])].                                       (10) 

Для вирішення цієї нелінійної системи можна використати метод послідовного 
завантаження, який зводиться до наступного алгоритму [11-12]. 

Крок 1. Будується матриця жорсткості 𝐾 і вектор вузлових сил 𝑄. Враховуємо, 

що i=0, 𝑄̃ = 0 із вирішення лінійної системи знаходимо вузлові переміщення 𝑈0. 

Крок 2. i=і+1. На і-й ітерації використовуючи (10), вираховуємо 𝑄̃𝑖 і його суму 

з 𝑄: 𝑃𝑖 = 𝑄̃𝑖 + 𝑄. 
Крок 3. Вирішується система лінійних рівнянь 

𝐾𝑈𝑖 = 𝑃𝑖 .                                                          (11)  

Крок 4. Перевірка умови збіжності ітераційного процесу де 𝜀 – мале число та  𝑈𝑖 
– максимальний по модулю вектор. Якщо збіжність не досягнута, то остання умова 
не виконується, то виконується перехід до кроку 2, в противному випадку до кроку 
5. 

Крок 5. Виконується обчислення деформацій і напружень кожного скінченного 
елемента на основі вектора 𝑈𝑖, який є наближеним вирішенням нелінійної системи 
(10). 

В загальному підсумку, вирішення нелінійної системи зводиться до вирішенню 
послідовності лінійних систем. Відмітимо, що при послідовних ітераціях 
змінюється лише права частина системи рівнянь, що дозволяє факторизувати 
матрицю жорсткості тільки один раз [13]. 

Чисельне дослідження багатокритеріальної параметричної оптимізації 
стійкості оболонки мінімальної поверхні на круглому контурі, з урахуванням 

геометричної нелінійності. Дослідження багатокритеріальної параметричної 
оптимізації стійкості та ваги з урахуванням геометричної нелінійності відбувається 
у програмному комплексі Femap with Nastran за рахунок ітераційного завантаження 
та власного програмного забезпечення. На рис. 1 зображена скінчено-елементна 
модель. Скінченні елементи plate – 2000 шт. Вузлів 2037 – штук. З’єднання з диском 
землі – жорстке защемлення. Матеріал сталь С275. Товщина оболонки 30 мм.  
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Рис. 1. Скінчено-елементна модель 

 

  
Рис. 2. Перша форма втрата 

стійкості. Eigenvalue 1 1.011184 
 

Рис. 7. Шоста форма втрата стійкості. 
Eigenvalue 6 65.55492 

 

  
Рис. 3. Друга форма втрата стійкості. 

Eigenvalue 2 8.492805 
Рис. 8. Сьома форма втрата стійкості. 

Eigenvalue 7 71.58318 
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Рис. 4. Третя форма втрата стійкості. 
Eigenvalue 3 38.31674 

 

Рис. 9. Восьма форма втрата стійкості. 
Eigenvalue 8 78.39202 

 

  
Рис. 5. Четверта форма втрата 

стійкості. Eigenvalue 4 39.81559 
 

Рис. 10. Дев’ята форма втрата 
стійкості. Eigenvalue 9 81.41466 

 

  

Рис. 6. П’ята форма втрата стійкості. 
Eigenvalue 5 64.14167 

Рис. 11. Десята форма втрата стійкості. 
Eigenvalue 10 81.369111 
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Виходячи з огляду на рис. 2-11 після оптимізаційного розрахунку перша форма 
втрати стійкості становить λ=1, що відповідає мінімальної межі перед втратою 
стійкості. На рис. 12 зображено розподілення товщини оболонки мінімальної 
поверхні після оптимізаційного розрахунку.  

 
Рис. 12. Розподілення товщини оболонки мінімальної поверхні на круглому плані 

після оптимізаційного розрахунку. Товщина становить від 5 до 45 мм 
 

 
Рис. 13. Графік зміни цільової функції – вага і коефіцієнт λ по циклам оптимізації 
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Результати чисельного дослідження багатокритеріальної параметричної 
оптимізації стійкості і ваги оболонки мінімальної поверхні на круглому контурі з 
урахуванням геометричної нелінійності. 

Після проведення чисельного експерименту – отримали наступні результати. 
Чисельне дослідження параметричної оптимізації стійкості з урахуванням геометричної 
нелінійності зображено на рис. 2-11 – на першій формі коефіцієнт λ=1, результати 
енергія деформації коливається від 1.0 до 81.4. 

Вперше було виконано чисельне дослідження параметричної оптимізації стійкості 
оболонки мінімальної поверхні на круглому з урахуванням геометричної нелінійності 
за допомогою методу скінченних елементів (МСЕ), достовірність отриманих 
результатів перевірено з теоретичними значеннями, збіжність скінченних елементів на 
високому рівні, а розміри скінченних елементів вибрані оптимальні по кількості і 
розмірів. Геометрична нелінійність показує уточнення дійсних напружень і переміщень 
від лінійного розрахунку на 9%, що є гарною економією матеріалів і високою точністю 
розрахунку. На графіку рис. 13. показано зміну цільових функцій, вдалося зменшити 
вагу на 8.8 т, що становить 23%, при цьому відбулося зменшення коефіцієнта λ з 5.36 до 
1.01, що фактично в 6 разів менше. Цей розрахунок дає можливість мінімальну товщину 
оболонки мінімальної поверхні перед втратою стійкості. 
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Оleksandr KOSHEVIY 
Multicriteria parametric optimization of the stability of the minimum surface shell on a 

circular contour, which consists of two inclined ellipses, taking into account 
geometricnonlinearity under thermostress loading 

This scientific publication presents an interesting applied problem of numerical research 
into the optimal design of a spatial thin-walled structure under thermo-mechanical loading. 
Optimal design of load-bearing structures can be divided into four main types: parametric, 
topological, shape optimization, and creation of composite materials for a specific task. There 
may be combinations of two or more types of optimization on a single object under study. This 
scientific publication considers two types of optimal design on a single object under study. 

A minimal surface shell is a thin-walled spatial structure with a given contour and a certain 
specified height, which was subsequently constructed using the parameter continuation 
method. The parameter extension method makes it possible to construct the optimal shape of 
the future minimal surface shell, which minimizes the internal forces, which in turn reduce the 
Mises stress, which is decomposed into normal and tangential stresses, leading to a reduction 
in the thickness of the shell.  

Optimal design of load-bearing structures into four main types: parametric, topological, 
shape optimization, creation of composite materials for a specific task. There may be 
combinations of two or more types of optimization on a single object under study. 

Multi-criteria parametric optimization of the minimum surface shell is performed in an 
automated mode in the Femap with Nastran software package and connected proprietary 
software, which was developed for a specific area of scientific and technical activity within the 
framework of applied research. 

A theoretical formulation of the relationship between the loss of stability of the minimum 
surface shell on a circular plane is presented, taking into account geometric nonlinearity under 
thermo-mechanical loading. 

After optimization calculation based on Figures 2-11, the first form of stability loss is λ=1, 
which corresponds to the minimum limit before stability loss. 

Graph 13 shows the change in target functions. We managed to reduce the weight by 8.8 
tons, which is 23%, while the coefficient λ decreased from 5.36 to 1.01, which is actually 6 
times less. This calculation allows for the minimum thickness of the shell of the minimum 
surface before loss of stability. 

Keywords: shell stability, multi-criteria parametric optimization, minimal surface shell, 
shell stability calculation, geometric nonlinearity, nonlinearity, MCE, force loads, static 
loads, finite element method. 


