Investigation of principal characteristics of the real estate by the wavel-transformation of time ranks

Authors

DOI:

https://doi.org/10.32347/2707-501x.2020.44.3-16

Keywords:

time series, discrete Haar wavelet transform, scaling factor, approximation coefficient, detail factor, filter, trend, cost of housing, activation of economic processes.

Abstract

An approach to housing cost forecasting using modified time series wavelet transforms is proposed, which can be used to compile optimistic, neutral and pessimistic scenarios for the implementation of housing investment projects.

The article proposes a method of modifying a discrete Haar wavelet transform, the use of which allows to obtain results that are suitable for meaningful economic interpretation. In order to provide an economic interpretation of the detailing coefficients of the time series, a modification for the wavelet coefficients is proposed, which will consist of dividing the sets of detailing wavelet coefficients by the indicators inverted by the square of the normalizing factors. Modification of the wavelet made it possible to formulate an economic interpretation of the transformation: for detailing the quarterly average it is necessary to know how much the values of the first and second counts (offsets by 0 and 1 from the beginning) deviate from their average, which shows the activation of the economic process at the beginning of the reference three. The upward trend will be curtailed in the positive results of the wavelet transformation, while speculative economic growth at the end of the quarter will correspond to the negative results.

The proposed modification of Haar wavelet transform was applied to time series of cost of homes in the Kiev region for the period from 2014 to 2018. unexpected rise in real estate prices.

It is revealed that the cost of housing in the Zgurov district of Kiev region. characterized by a steady downward trend in price. This is indicated by the positive values of all wavelet transformations for each of the following quarters. The modified wavelet analysis identifies warning indicators of destabilization of supply and demand in the rural housing market. The expediency of applying regression analysis to the results of wavelet transformations of time series of economic indicators is proved.

References

1. Bojko, A.S. (2011). Prognozuvannya krizovih yavish na tovarnomu rinku za dopomogoyu analizu vejvlet-entropiyi. Formuvannya rinkovih vidnosin v Ukrayini, 4, 43-45. - URL: http://nbuv.gov.ua/UJRN/frvu_2011_4_12. Shliakhy pidvyshchennia efektyvnosti budivnytstva v umovakh formuvannia rynkovykh vidnosyn, 42, 151.

Danilov, V.Ya., Slyusar, A.V. & Gusye O.A. (2016). Vejvlet analiz ryadiv valyutnih kotiruvan. Sistemni tehnologiyi, 5, 20-26. URL: http://nbuv.gov.ua/UJRN/st_2016_5_5.

Dolmatov, V.M. & Matusov, Yu. P. (2010). Vejvletne prognozuvannya procesiv inflyaciyi v Ukrayini. Ekonomika ta derzhava, 5, 64-66.

Kirichenko, L.O., Kobickaya, A. V. & Storozhenko, Yu. A. (2012) Ispolzovanie vejvlet-harakteristik vremennyh ryadov ekspertnoj sisteme.Sistemni tehnologiyi,4,54-61.

Kravec, T.V. & Sityenko, A. (2012). Vejvlet-analiz fondovih indeksiv Ukrayini ta Polshi v periodi krizi ta relaksaciyi. Visnik Kiyivskogo nacionalnogo universitetu imeni Tarasa Shevchenka. Ekonomika, 132, 39-44. - URL: Kravec, T. V. & Bereznyuk, O.V. (2014) Efekti sinhronizaciyi dinamiki fondovih indeksiv ta kursiv valyut pri multifraktalnomu analizi z vikoristannyam vejvlet tehnologij. Biznes Inform, 2, 116-121. - URL: http://nbuv.gov.ua/UJRN/binf_2014_2_20.

Kravec, T.V. (2013). Modelyuvannya dohodnostej fondovih indeksiv metodami vejvletanalizu / V. Kravec //Biznes Inform.

7. 104-109. 7. http://nbuv.gov.ua/UJRN/VKNU_Ekon_2012_132_12.

Micel, A.A.& Shemyakina, A.N. (2013). Analiz zatrat predpriyatiya s pomoshyu vejvletpreobrazovanij. Ekonomicheskij analiz: teoriya i praktika, 46 (349). URL: https://cyberleninka.ru/article/n/analiz-zatrat-predpriyatiya-s-pomoschyuveyvletpreobrazovaniy-1 (data obrasheniya: 28.05.2019).

9. Miroshnik, O.O. (2014). Kompyuterne modelyuvannya nejronnoyi merezhi dlya rozpiznavannya vejvlet-obraziv. Visnik Harkivskogo nacionalnogo tehnichnogo universitetu silskogo gospodarstva imeni Petra Vasilenka, 154, 57-58.

Pogorelenko, N.P. (2015). Analiz dinamiki skladovih vhidnih finansovih potokiv bankivskoyi sistemi na osnovi vejvlet-peretvorennya yih chasovih ryadiv. Ekonomichnij chasopis-HHI, 7-8(2), 44-48.

Pogorelenko, N.P. (2016). Vejvlet-analiz chasovih ryadiv pokaznikiv bankivskoyi diyalnosti v rozkritti stabilnosti funkcionuvannya bankivskoyi sistemi. Aktualni problemi ekonomiki, 1, 417-428. - URL: http://nbuv.gov.ua/UJRN/ape_2016_1_49.

Sherbakova, G.Yu. & Krylov, V. N. (2009). Multistartovyj subgradientnyj metod obucheniya nejronnyh setej v prostranstve vejvlet-preobrazovaniya. Naukovi praci Doneckogo nacionalnogo tehnichnogo universitetu. Ser: Informatika, kibernetika ta obchislyuvalna tehnika, 10, 202-206.

13. Yur, T.V. (2015). Obzor primenenij vejvlet-preobrazovaniya v zadachah intellektualnogo analiza dannyh. Zbirnik naukovih prac Harkivskogo nacionalnogo universitetu Povitryanih Sil., 4(45), 85-88.

Published

2020-02-21

How to Cite

Sorokina, L., & Goyko, A. (2020). Investigation of principal characteristics of the real estate by the wavel-transformation of time ranks. Ways to Improve Construction Efficiency, (44), 3–16. https://doi.org/10.32347/2707-501x.2020.44.3-16