Trends in facade system overhaul based on the data analysis of procurement contracts via the PROZORRO public e-procurement system

Authors

  • A. Radkevich Дніпровський національний університет залізничного транспорту ім. академіка В. Лазаряна, м. Дніпро http://orcid.org/0000-0001-6325-8517
  • K. Netesa Дніпровський національний університет залізничного транспорту ім. академіка В. Лазаряна, м. Дніпро http://orcid.org/0000-0002-4087-5552
  • T. Tkach ДВНЗ «Придніпровська державна академія будівництва та архітектури», м. Дніпро http://orcid.org/0000-0002-9433-7514

DOI:

https://doi.org/10.32347/2707-501x.2020.45.120-130

Keywords:

facade systems, operation, overhaul, cost analysis, energy efficiency.

Abstract

Obviously, it goes without saying that sustainable economic development and an increase in the cost of energy carriers require improvements in the energy efficiency of existing buildings and structures. For this reason, intelligent energy monitoring and searching for new methods aimed at improving the performance of buildings have been of utmost importance. One of the feasible solutions to improving the performance of existing buildings would arguably be the reduction in energy costs by increasing the insulating properties of their facade systems. This paper analyses the current trends in the overhaul of facade systems in Ukraine. The research results into facade system renovation conducted via the ProZorro public e-procurement system demonstrated that a significant number of repair works were the improvements in the thermal insulation properties of facade systems by means of mineral wool panels and plaster cladding. The percentage of this type of overhaul contracts reached 67% of the total number of investigated contracts. Facade insulation renovation using expanded polystyrene plates approximately made up 20%. The restoration works of an outer layer of façade systems, including plaster restoration, spot-priming, restoration of hard putty, plaster facing and painting works, revetment, etc., which do not impact the energy efficiency of a building, made up about 13% of the total number of contracts. The area of façade works in question averaged from 200 m2 to 1500 m2. Having compared the prices per one square metre of a façade system, the average cost for such works has been calculated in the range of 1500 UAH to 2000 UAH; while the cost of advanced works ranged from 3500 UAH to 4000 UAH. Given a short maintenance-free service life of 7-10 years of the corresponding systems and guided by cost-effectiveness reasons, it has been suggested replacing these facade systems with ventilated facade systems with thermal insulation and ceramic cladding. This façade system has proved to have a significantly longer durability and maintenance-free service life, while the initial investment costs will further increase the energy efficiency properties of a building. As the result, this will enable keeping energy operating costs to minimum, which will consequently increase the building’s cost-effectiveness and its compliance with current global trends in energy conservation.

References

Державний стандарт України ДСТУ-Н Б В.1.2-13:2008 Настанова Основи проектування конструкцій. – На заміну ENV 1991-1:1994; надано чинності 2009-07-01. – К. Мінрегіонбуд України, 2009. – 81 с.

ДБН В.1.2-14:2018. Система забезпечення надійності та безпеки будівельних об’єктів. – К. Мінрегіонбуд України, 2018.

Закон України «Про енергетичну ефективність будівель» від 22 червня 2017р. № 2118 – VIII (Відомості Верховної Ради (ВВР), 2017, № 33, ст 359 – К., 2017.

Гагарин В.Г. Теплоизоляционные фасады с тонким штукатурным слоем / В.Г. Гагарин // АВОК. – 2007. – №6. – С. 82-103.

Галушко В.А. Использование холодного склеивания как альтернатива механическому способу крепления кровельных материалов / В.А. Галушко, Ю.Е Ролитенко // Мости та тунелі: теорія, дослідження, практика, №9. 2006, 4-8.

Емельянова В.А. Оптимизированная конструкция навесного вентилируемого фасада / В.А. Емельянова, Д.В. Немова, Д.Р. Мифтахова // Инженерно-строительный журнал. – 2014. - №6. – С. 53-66.

Еноткина С. Эксплуатация многослойных ограждающих конструкций / С. Еноткина // Молодой ученый. – 2011. – №6. – С. 49-52.

Нетеса К.М. Определение аспектов оценки надежности фасадных систем с точки зрения eurocode / К.М. Нетеса, А.В. Радкевич // Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту, №4 (58). 2015, с. 205-213.

Нетеса К.М. «Проблематика современных фасадных систем многоэтажных жилых зданий». / К.М. Нетеса, А.В. Радкевич // Міжнародна конференція експлуатація та реконструкція будівель і споруд, присвячена 85-річчю Одеської державної академії будівництва та архітектури. – Одеса, 13-15 жовтня 2015 р.

Радкевич А.В. Аналіз існуючих методів і моделей при обґрунтуванні ор-ганізаційно-технологічних рішень будівництва об’єктів / А.В. Радкевич, І.А. Арутюнян, Н.О. Данкевич // Мости та тунелі: теорія, дослідження, практика. – 2017. – Вип. 11. – С. 74–80.

Савйовский В. В. Дефекты теплоизоляции существующих зданий и пути их устранения / В. В. Савйовский, М. Н. Джалалов // Науковий вісник будівництва. – Харків: ХДТУБА, ХОТВ АБУ, 2010. – Вып. 57. – С. 102 – 106.

Савйовский В.В. Энергоаудит и термомодернизация зданий / В.В. Савйовский, М.Н. Джалалов, А.В. Савйовский [та ін.] // Будівництво України. – 2010. – № 6. – С. 3 – 7.

Туснина О.А. Теплотехнические свойства различных конструктивных систем навесных вентилируемых фасадов / О.А. Туснина, А.А. Емельянов, В.М. Туснина // Инженерно-строительный журнал. – 2013. – №8. – С. 54-63.

Block, P., Schlueter, A., Veenendaal, D., Bakker, J., Begle, M., Hischier, I., Hofer, J., Jayathissa, P., Maxwell, I., Echenagucia, T. M. NEST HiLo: Investigating lightweight construction andadaptive energy systems. JOURNAL OF BUILDING ENGINEERING. (2017); Volume: 12; pp. 332-341. DOI: 10.1016/j.jobe.2017.06.013

Gallo, P., Romano, R. Adaptive facades, developed with innovative nanomaterials, for a sustainable architecture in the Mediterranean area. Procedia Engineering. (2017); Volume: 180; pp. 1274-1283. DOI: 10.1016/j.proeng.2017.04.289.

Figaszewski J., Sokolowska-Moskwiak J. The Concept of Multifuncional Wall–an Energy System Integrated in a Single Wall // Architecture Civil Engineering Environment. 2017. Vol. 10 (Iss.1), pp. 5-10.

Falagan, D. H. Glass fiber reinforced polyester in the works of Tous and Fargas. INFORMES DE LA CONSTRUCCION. (2017); Volume: 69 (Iss. 546); Article number: e196, DOI: 10.3989/id54733.

Park, S., Neizert, T., Kim, Y., Lee, S. Properties of Lightweight Composites Using Industry Wastes with NaOHAlkaline Activator. JOURNAL OF ASIAN ARCHITECTURE AND BUILDING ENGINEERING. (2017); Volume: 16 (Iss. 3); pp. 619-624. DOI: 10.3130/jaabe.16.619.

Pittau F., Malighetti, L. E., Iannaccone, G., Masera, G. Prefabrication as large-scale efficient strategy for the energy retrofit of the housing stock: An Italian casestudy. Procedia Engineering. (2017); Volume: 180; pp. 1160-1169. DOI: 10.1016/j.proeng.2017.04.276.

Ciampi, M Some thermal parameters influence on the energy performance of the ventilated walls / M. Champi, F. Leccese, G. Tuoni // Processing of 20th UIT National Heart Transfer Conference. Maratea, Italy, 2002, pp. 357-362.

How to Cite

Radkevich, A., Netesa, K., & Tkach, T. (2021). Trends in facade system overhaul based on the data analysis of procurement contracts via the PROZORRO public e-procurement system. Ways to Improve Construction Efficiency, (45), 120–130. https://doi.org/10.32347/2707-501x.2020.45.120-130