Comparison of efficiency for steel and combined frames



steel frame, combined frame, building, load-bearing transverse frame, filter station


Recently, in the practice of design, customers of design works and investors of various projects have a dilemma regarding the choice of building material for load-bearing building structures. At the same time, the choice is usually limited to two types of materials steel and reinforced concrete. Each of these materials has its advantages and disadvantages, which results in their different efficiency of application for various types of building structures. At the same time, the main attention is paid to the estimation side, because in modern complex and dynamic conditions, it turns out to be dominant in many cases.

The article presents the results of research of the completed master's thesis on the comparative analysis of the effectiveness of steel and combined frames (steel-reinforced concrete) on the example of the filter station building. The building has dimensions in plan of 54 × 36 m with a total height of about 22 m. Its supporting frame is a statically nondefined flat frame consisting of columns and crossbars in the form of trusses. In the longitudinal direction of the building, the frames are united into a spatial system by means of covering structures. The building is craneless and has three floors, each about 6.5 m high.

In the course of research, the considered variants of the transverse frame were analyzed using the finite element method on the basis of the LIRA-CAD multifunctional design complex. As a result, appropriate cross-sections for loads according to the climatic conditions of Ukraine were obtained. A comparison of variants showed that the first design variant is 9 % cheaper. Taking into account the additional technological advantages in its manufacture, the steel frame can be considered more effective for the given construction conditions and be recommended for practical implementation. Separately, it should be noted that such a frame also has an average of 5 times less total mass, which should be considered its additional advantage.


ДБН В.2.6-198:2014. Сталеві конструкції. Норми проектування. 2014. Київ: Мінрегіонбуд України. 205 с.

ДБН В.2.6-98:2009. Конструкції будинків і споруд. Бетонні та залізобетонні конструкції. Основні положення. 2011. Київ: Мінрегіонбуд України. 71 с.

ДСТУ ХХХХ. Конструкції сталеві будівельні. Настанова з оцінювання якості конструктивних рішень (проект, перша редакція). 2020. Київ: ДП «УкрНДНЦ». 42 с.

ДСТУ ХХХХ. Конструкції сталеві будівельні. Настанова з оцінювання якості конструктивних рішень (проект, восьма редакція). 202Х. Київ: ДП «УкрНДНЦ». 44 с.

Bannikov D., Radkevich А., Nikiforova N. Features of the Design of Steel Frame Structures in India for Seismic Areas. Materials Science Forum. 2019. Trans Tech Publications LTD. Vol. 968. Р. 348-354. 10.4028/

Kruhlikova N.G., Bannikov D.O. Rational design of shot-span industrial building roof for reconstruction conditions. Наука та прогрес транспорту. 2019. Вип. 2 (80). С. 144-152.

Безсалий В.М., Банніков Д.О. Ефективність сталевих тонкостінних оцинкованих профілів для аркових елементів. Мости та тунелі: теорія, дослідження, практика. 2019. Вип. 16. С. 20-29.

Zienkiewicz O.C., Taylor R.L., Fox D.D. The Finite Element Method for Solid and Structural Mechanic: 7-th edition. 2014. Elseveir LTD, 624 р.

Bofang Z. The Finite Element Method: Fundamentals and Applications in Civil, Hydraulic, Mechanical and Aeronautical Engineering, 2018. Singapore: John Wiley & Sons Singapore Pte. Ltd., 843 р.

Ahmed S., Abdelhamid H., Ismail B., Ahmed F. Differential Quadrature Finite Element and the Differential Quadrature Hierarchical Finite Element Methods for the Dynamics Analysis of on Board Shaft. European journal of computational mechanics. 2021. No. 4-6, Vol. 29. P. 303-344.

Kumar A., Shitole P., Ghosh R., Kumar R., Gupta A. Experimental and numerical comparisons between finite element method, element-free Galerkin method, and extended finite element method predicted stress intensity factor and energy release rate of cortical bone considering anisotropic bone modelling. Proceedings of the institution of mechanical engineers part h-journal of engineering in medicine. 2019. 11.No. 8, Vol. 233. P. 823-838.

Chen LP., Yang Y. A New Mixed Finite Element Method for 'Not Consolidation Equations. Advances in applied mathematics and mechanics. 2020. No. 6, Vol. 12. P. 1520-1541.

Tiutkin O., Petrosian N., Radkevych A. & Alkhdour A. Regularities of Stress State of Unsupported Working Occurring in a Layered Massif. E3S Web of Conferences. 2019. Vol. 109. Article 00100.

Dubinchyk O., Petrenko V., Ihnatenko D., Kildieiev V. Comprehensive analysis of the retaining pile structure with the determining the stability factor by numerical methods. E3S Web of Conferences. 2019. Vol. 109. Article 00020.

Kuprii V., Petrenko V., Kuprik S., Kripak Ye. Numerical analysis of changing the force factors in temporary lining at the tunnel construction by the NATM. E3S Web of Conferences. 2019. Vol. 109. Article 00044.


Тютькін О.Л., Мірошник В.А., Гелетюк І.В. Комплексний аналіз конструкції стовбуру Дніпровського метрополітену. Мости та тунелі: теорія, дослідження, практика. 2021. Вип. 19. С. 91-98. 10.15802/bttrp2021/233992.

ДБН В.1.2-2:2006. Система забезпечення надійності та безпеки будівельних об'єктів. Навантаження та впливи. Норми проектування. 2006. Київ: Мінрегіонбуд України. 70 с.

Зміна № 2 до ДБН В.1.2-2:2006. Навантаження і впливи. Норми проектування. 2020. Київ: Мінрозвитку громад та територій. 6 с.

ДСТУ 8940:2019. Труби сталеві профільні. Технічні умови. 2019. Київ: Мінекономрозвитку України. 12 с.

ДСТУ 8768:2018. Двотаври сталеві гарячекатані. Сортамент. 2018. Київ: Мінекономрозвитку України. 8 с.



How to Cite

Bannikov, D., Nikiforova, N. ., & Leontiieva, I. . (2023). Comparison of efficiency for steel and combined frames. Ways to Improve Construction Efficiency, 1(51), 182–193. Retrieved from