Evolution of the management paradigm of construction enterprises
DOI:
https://doi.org/10.32347/2707-501x.2022.49(2).346-359Keywords:
management of construction enterprises, paradigm, evolution, BIM, stakeholders, ecosystem governance, digital maturityAbstract
The article substantiates the need to shift from industrial–resource-based approaches to managing construction enterprises toward digital, stakeholder-oriented, and biosphere-compatible models in response to the climate, resource, and regulatory challenges of the twenty-first century. The study design combines systems-evolutionary and comparative-institutional analysis, a morphological comparison of paradigms by the criteria of management philosophy, resource factors, the role of technologies, stakeholder interaction, and socio-ecological orientations, as well as benchmarking of global practices in the EU, the United States, and Asian countries. The sequence of transformations is shown: from the industrial–resource paradigm, through the innovation-technological and the digital-stakeholder paradigms, to the biosphere-compatible ecosystem paradigm in which decisions rely on integrated economic, social, and climate indicators. The European model institutionalizes requirements through common indicators and reference architectures of digital platforms; the American model emphasizes industrialization, AI-driven risk management, and market-based “green” standards; Asian jurisdictions scale state programs for the digitalization and robotization of production–construction processes. Practical guidelines for Ukrainian enterprises include the deployment of a common data environment and data-governance policies with a phased transition to BIM Level 3; the formation of inter-organizational Data Spaces for the sovereign exchange of verified data; the institutionalization of ESG reporting and the unification of LCA/LCC; procurement and contracting reform toward integrated collaboration models with payment based on life-cycle performance; the scaling of modular off-site construction; and the development of competencies in BIM/IDM, sustainability assessment, and risk analytics. A transition roadmap is proposed with intermediate milestones—from BIM Level 2 to Level 3, from local CDEs to inter-organizational Data Spaces—and performance indicators including carbon budgets, supply-chain transparency, and the share of reused materials, ensuring alignment of economic efficiency with climate neutrality and the social legitimacy of construction project.
References
Taylor F. W. The principles of scientific management. New York: Harper & Brothers, 1911.
Project Management Institute. A Guide to the Project Management Body of Knowledge (PMBOK® Guide). 6th ed. Newtown Square, PA: PMI, 2017.
Koskela L., Ballard G., Howell G., Tommelein I. The foundations of lean construction. In: Best R., de Valence G. (eds.). Design and Construction: Building in Value. Oxford: Butterworth-Heinemann, 2002. p. 211–226.
Eastman C. M., Teicholz P., Sacks R., Liston K. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors. 2nd ed. Hoboken: Wiley, 2011.
Succar B. Building information modelling framework: A research and delivery foundation for industry stakeholders. Automation in Construction. 2009. 18(3). P. 357–375. DOI: 10.1016/j.autcon.2008.10.003.
Sacks R., Koskela L., Dave B. A., Owen R. Interaction of lean and building information modeling in construction. Journal of Construction Engineering and Management. 2010. 136(9). P. 968–980.
Freeman R. E. Strategic Management: A Stakeholder Approach. Boston: Pitman, 1984.
Olander S., Landin A. Evaluation of stakeholder influence in the implementation of construction projects. International Journal of Project Management. 2005. 23(4). P. 321–328. DOI: 10.1016/j.ijproman.2005.02.002.
Yang J., Shen G. Q., Ho M., Drew D. S., Chan A. P. C. Exploring critical success factors for stakeholder management in construction projects. Journal of Civil Engineering and Management. 2009. 15(4). P. 337–348. DOI: 10.3846/1392-3730.2009.15.337-348.
Thabrew L., Ries R., Dornack C. Sustainable development and life cycle assessment in the construction industry: A case study. Sustainable Development. 2009. 17(6). P. 369–379. DOI: 10.1002/sd.389.
Häkkinen T., Belloni K. Barriers and drivers for sustainable building. Building Research & Information. 2011. 39(3). P. 239–255. DOI: 10.1080/09613218.2011.561948.
Ballard G., Howell G. Lean project management. Building Research & Information. 2003. 31(2). P. 119–133. DOI: 10.1080/09613210301997.
Zou P. X. W., Zhang G., Wang J. Understanding the key risks in construction projects in China. International Journal of Project Management. 2007. 25(6). P. 601–614. DOI: 10.1016/j.ijproman.2007.03.001.
Сорокіна Л. В., Гойко А. Ф., Стеценко С. П., Ізмайлова К. В. Економетричний інструментарій управління фінансовою безпекою підприємств будівництва: монографія. Київ: Діонат, 2017. 404 с.
Рижакова Г. М., Малихіна О. М., Ручинська Ю. М., Петренко Г. С. Економіко-управлінські предиктори стратегічного девелопменту в умовах динамічного середовища впровадження проєктів. Управління розвитком складних систем. 2019. Вип. 39. С. 154–163.
Рижаков Д. А., Коваль Т. С., Федорова Я. Ю. та ін. Розбудова ефективної підсистеми економічного контролінгу в складі системи будівельного девелопменту. Управління розвитком складних систем. 2019. Вип. 39. С. 146–153.
Латишева О. В., Сайко А. Д. Будівельна галузь України: сучасний стан та її роль у забезпеченні сталого розвитку національної економіки. Економічний вісник Донбасу. 2019. № 2(56). С. 66–73. DOI: 10.12958/1817-3772-2019-2(56)-66-73.
Кулалаєва Н. В. Імплементація стратегії сталого розвитку до професійної освіти будівельників. Сучасні інформаційні технології та інноваційні методики навчання у підготовці фахівців.2018. 51. С. 105–110.
Darko, A., Chan, A. P. C., Adabre, M. A., Edwards, D. J., Hosseini, M. R., & Ameyaw, E. E. (2020). Artificial intelligence in the AEC industry: Scientometric analysis and visualization of research activities. Automation in Construction, 112, 103081. https://doi.org/10.1016/j.autcon.2020.103081
Adner, R. (2016). Ecosystem as Structure: An Actionable Construct for Strategy. Journal of Management, 43(1), 39-58. https://doi.org/10.1177/0149206316678451
Oesterreich T. D., Teuteberg F. Understanding the implications of digitization and automation in the context of Industry 4.0: A systematic literature review. Computers in Industry. 2016. Vol. 83. P. 121–139. URL: https://www.sciencedirect.com/science/article/pii/S0166361516301944
Bertram, N., Fuchs, S., Mischke, J., Palter, R., Strube, G., & Woetzel, J. (2019). Modular construction: From projects to products. McKinsey & Company. https://salo.li/C64c30d
European Commission. (2019). The European Green Deal (COM(2019) 640 final) [Communication]. EUR-Lex. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52019DC0640
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).