Intelligent caching in high-load systems as a response to the limitations of classical cache management methods

Authors

DOI:

https://doi.org/10.32347/2707-501x.2023.52(3).227-236

Keywords:

adaptability, data, data flow management, data storage, database, information system, query processing optimization, caching technology

Abstract

The relevance of the work is substantiated by the importance of optimal data processing in highly loaded systems, which is achieved by using caching technology. The problems of effective management of data flows in modern information systems are researched. The basic functions and main types of caching in high-load information systems are considered. The role of caching in ensuring the scalability and stability of highly loaded systems in the conditions of growing requirements for their reliability, adaptability, stability and performance is defined. It is specified that in the realities of modern dynamic, highly loaded distributed systems, there are more and more situations in which these methods become insufficient or ineffective. At the same time, increasing the efficiency of data access, load balancing, reducing latency and ensuring system stability directly depends on a properly organised caching mechanism. The typical limitations of classical cache management methods are analysed. It is shown that methods such as Least Recently Used, Least Frequently Used, First In First Out and their modifications are more often demonstrating limitations in a dynamic environment where changes in the structure of requests, the context of objects and variability of user behaviour play an important role. As a response to the limitations of classical cache management methods for tasks where it is essential to take into account the specifics of queries and user behaviour of different groups, the context and relationships between objects, as well as the dynamics of queries based on their history, the expediency of using intelligent cache management strategies is substantiated. The prospect of development and integration of intelligent cache management components into the operation of high-load systems is shown, which will allow them to learn from real data, predict future requests and make effective decisions on saving or deleting objects from the cache. It has been decided to focus further research on the development of an intelligent caching method that can provide efficient access to relevant data in the information infrastructure of systems in the field of architecture and construction.

References

Cisco Annual Internet Report (2018–2022). URL: https://www.cisco.com/c/en/us/solutions/executive-perspectives/annual-internet-report/index.html

Hazelcast. What Is Caching? How Caching Works and Its Limitations. URL: https://hazelcast.com/foundations/caching/caching/

Prisma. Database caching: Overview, types, strategies and their benefits. URL: https://www.prisma.io/dataguide/managing-databases/introduction-database-caching

Megiddo N., Modha D. ARC: A Self-Tuning, Low Overhead Replacement Cache, USENIX Conference on File and Storage Technologies (FAST), 2003. URL: https://www.usenix.org/ legacy/event/fast03/tech/full_papers/megiddo/megiddo.pdf

Rotem-Gal-Oz A. Fallacies of Distributed Computing Explained, 2006. URL: https://arnon.me/wp-content/uploads/Files/fallacies.pdf

Swain D., Paikaray B., Swain D. AWRP: Adaptive Weight Ranking Policy for Improving Cache Performance, Journal of Computing, Vol. 3 (2), 2011. DOI: 10.48550/arXiv.1107.4851

Scully T., Jiang S., Zhang X. Learning-based Cache Replacement for High Performance and Dynamic Workloads. Proceedings of the 2020 IEEE International Conference on Big Data. 2020, p. 4042-4051.

М Liu E., Hashemi M., Swersky K., Ranganathan P., Ahn J. An Imitation Learning Approach for Cache Replacement, International Conference on Machine Learning (ICML), 2020. DOI: https://doi.org/10.48550/arXiv.2006.16239

Gartner. Magic Quadrant for Distributed Data Management Solutions. URL: https://www.gartner.com/en/documents/4000163

CacheFly. The Power of Machine Learning for Advanced CDN Caching Strategies. 2022, URL: https://www.cachefly.com/news/the-power-of-machine-learning-for-advanced-cdn-caching-strategies

Cisco. Global Networking Trends Report, 2022. URL: https://storage.eventcheckin.co.kr/cisco/2023/CXO_symposium/data/2022_Global_Networking_Trend_Report_eng.pdf

Weiner M., Xu Y., "Performance Metrics for Distributed Systems", ACM Computing Surveys, 2022, Vol. 54, No. 7, P. 1–29.

Published

2023-11-24

How to Cite

Volokh , B. (2023). Intelligent caching in high-load systems as a response to the limitations of classical cache management methods. Ways to Improve Construction Efficiency, 3(52), 227–236. https://doi.org/10.32347/2707-501x.2023.52(3).227-236