Study of the influence of modifying additives on the formation of properties of thermoplastic compositions incorporating iron oxide precipitate
DOI:
https://doi.org/10.32347/2707-501x.2025.56(1).285-294Keywords:
thermoplastic compositions, PVDF, iron oxide precipitate, rheological additives, degassing additives, coatings, physicomechanical properties, performance characteristicsAbstract
Nowadays, a wide range of approaches exists for improving the properties of PVDF-based thermoplastic coatings intended for use under intensive mechanical loads and exposure to aggressive environments. During the formation of such coatings, rheology-modifying and degassing additives play an important role, as they can influence the structural organization of the polymer matrix, minimize internal defects, reduce the likelihood of pore formation, and stabilize the film-forming process. In particular, acrylic copolymers and PTFE-modified waxes are widely used as effective modifiers; however, the mechanism of their influence on the performance characteristics of the coatings remains insufficiently explored. In this context, a systematic analysis of the potential application of functional additives in thermoplastic compositions has been carried out, which made it possible to identify the key factors affecting the development of barrier, physicomechanical, and protective properties of the material. The necessity of establishing reliable methodological approaches for studying structure formation during thermal treatment and cooling is emphasized, as these stages determine the uniformity of the coating and its long-term durability. The developed approach for assessing the influence of modifiers enables a comprehensive analysis of changes in rheological behavior, degassing processes, and final performance indicators of the coatings. The results of calculations and experimental tests demonstrate the ambiguous effect of the nature of the additives: different types of modification may either enhance or limit certain material properties. The availability of such data provides a basis for optimizing formulations and selecting the most effective systems. Thus, it has been established that the use of specialized modifiers makes it possible to purposefully regulate the processes of thermoplastic coating formation, ensuring the creation of a dense, stable structure with improved resistance to corrosion, UV radiation, and chemical exposure, which is crucial for enhancing the durability and reliability of the materials.
References
Krivenko P.V., Guziy S.G., Mokhort N.A., Tropinov A.M., Experience from the use of the geocement-based coatings for protection of the inner surfaces of the flues from aggressive exposure of flue gases. Journal of Contemporary Building Materials. 2010. 5 (85), 88–93.
Кривенко П.В., Гузий С.Г. Защита металлоконструкций от агрессивных внешних сред композициями на основе геоцементов. Вісник ОДАБА. 2009. Вип. №33. С. 228-234.
Плугін А.А., Плугін О.А., Касьянов В.В., Плугін Д.А., Конєв В.В. Дослідження заземлених екранів із електропровідних композицій як способу захисту від електрокорозії. Збірник наукових праць Українського державного університету залізничного транспорту. 2017. Випуск 171. С. 53-61.
Плугин А.А., Дудин А.А., Плугин Ал.А., Плугин А.Н. Теоретические предпосылки защиты бетонных, железобетонных и каменных конструкций от переменных токов утечки. Науковий вісник будівництва. 2008. Вип. 47. С. 179-184.
Kogler R. (2015). Steel Bridge Design Handbook: Corrosion Protection of Steel Bridges. Publication No. FHWA-HIF-16-002 - Vol. 19. URL: https://www.online-pdh.com/pluginfile.php/56538/mod_resource/content/1/SBC_SG.pdf
Krivy V., Kubzova M., Kreislova K., Urban V. Characterization of corrosion products on weathering steel bridges influenced by chloride deposition. Metals. 2017. 7(9). 336. https://doi.org/10.3390/met7090336
Lazorenko G., Kasprzhitskii A., Nazdracheva T. Anti-corrosion coatings for protection of steel railway structures exposed to atmospheric environments: A review, Constr. Build. Mater., 2021, 288, 123115. https://doi.org/10.1016/j.conbuildmat.2021.123115
Shevchenko V.Y., Shilova O.A., Kochina T.A., Barinova L.D., Belyi O.V. Environmentally friendly protective coatings for transport. Herald of the Russian Acad. Sci., 2019, 89 (3), pp. 279-286. https://doi.org/10.1134/S1019331619030080
Majd M.T., Shahrabi T., Ramezanzadeh B. Production of an eco-friendly anticorrosion ceramic base nanostructured hybrid-film based on Nd (III)-C7H6N2 on the mild steel surface; Electrochemical and surface studies. Constr. Build. Mater., 2019, 221, 456–468. https://doi.org/10.1016/j.conbuildmat.2019.06.122
Guangzhi Zhang. The protection measures and regular pattern of hull corrosion. Chinese Journal of Ship Repairing. 2003. Vol. 16. Pp. 53-58. https://doi.org/10.4028/www.scientific.net/AMR.936.1091
Smith C., Siewert T., Mishra B., Olson D., Lassiegne A. (2004). Coatings for Corrosion Protection: Offshore Oil and Gas Operation Facilities, Marine Pipeline and Ship Structures. 334 р. URL: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication1035.pdf
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).