Study of the influence of modifying additives on the formation of properties of thermoplastic compositions incorporating iron oxide precipitate

Authors

DOI:

https://doi.org/10.32347/2707-501x.2025.56(1).285-294

Keywords:

thermoplastic compositions, PVDF, iron oxide precipitate, rheological additives, degassing additives, coatings, physicomechanical properties, performance characteristics

Abstract

Nowadays, a wide range of approaches exists for improving the properties of PVDF-based thermoplastic coatings intended for use under intensive mechanical loads and exposure to aggressive environments. During the formation of such coatings, rheology-modifying and degassing additives play an important role, as they can influence the structural organization of the polymer matrix, minimize internal defects, reduce the likelihood of pore formation, and stabilize the film-forming process. In particular, acrylic copolymers and PTFE-modified waxes are widely used as effective modifiers; however, the mechanism of their influence on the performance characteristics of the coatings remains insufficiently explored. In this context, a systematic analysis of the potential application of functional additives in thermoplastic compositions has been carried out, which made it possible to identify the key factors affecting the development of barrier, physicomechanical, and protective properties of the material. The necessity of establishing reliable methodological approaches for studying structure formation during thermal treatment and cooling is emphasized, as these stages determine the uniformity of the coating and its long-term durability. The developed approach for assessing the influence of modifiers enables a comprehensive analysis of changes in rheological behavior, degassing processes, and final performance indicators of the coatings. The results of calculations and experimental tests demonstrate the ambiguous effect of the nature of the additives: different types of modification may either enhance or limit certain material properties. The availability of such data provides a basis for optimizing formulations and selecting the most effective systems. Thus, it has been established that the use of specialized modifiers makes it possible to purposefully regulate the processes of thermoplastic coating formation, ensuring the creation of a dense, stable structure with improved resistance to corrosion, UV radiation, and chemical exposure, which is crucial for enhancing the durability and reliability of the materials.

References

Krivenko P.V., Guziy S.G., Mokhort N.A., Tropinov A.M., Experience from the use of the geocement-based coatings for protection of the inner surfaces of the flues from aggressive exposure of flue gases. Journal of Contemporary Building Materials. 2010. 5 (85), 88–93.

Кривенко П.В., Гузий С.Г. Защита металлоконструкций от агрессивных внешних сред композициями на основе геоцементов. Вісник ОДАБА. 2009. Вип. №33. С. 228-234.

Плугін А.А., Плугін О.А., Касьянов В.В., Плугін Д.А., Конєв В.В. Дослідження заземлених екранів із електропровідних композицій як способу захисту від електрокорозії. Збірник наукових праць Українського державного університету залізничного транспорту. 2017. Випуск 171. С. 53-61.

Плугин А.А., Дудин А.А., Плугин Ал.А., Плугин А.Н. Теоретические предпосылки защиты бетонных, железобетонных и каменных конструкций от переменных токов утечки. Науковий вісник будівництва. 2008. Вип. 47. С. 179-184.

Kogler R. (2015). Steel Bridge Design Handbook: Corrosion Protection of Steel Bridges. Publication No. FHWA-HIF-16-002 - Vol. 19. URL: https://www.online-pdh.com/pluginfile.php/56538/mod_resource/content/1/SBC_SG.pdf

Krivy V., Kubzova M., Kreislova K., Urban V. Characterization of corrosion products on weathering steel bridges influenced by chloride deposition. Metals. 2017. 7(9). 336. https://doi.org/10.3390/met7090336

Lazorenko G., Kasprzhitskii A., Nazdracheva T. Anti-corrosion coatings for protection of steel railway structures exposed to atmospheric environments: A review, Constr. Build. Mater., 2021, 288, 123115. https://doi.org/10.1016/j.conbuildmat.2021.123115

Shevchenko V.Y., Shilova O.A., Kochina T.A., Barinova L.D., Belyi O.V. Environmentally friendly protective coatings for transport. Herald of the Russian Acad. Sci., 2019, 89 (3), pp. 279-286. https://doi.org/10.1134/S1019331619030080

Majd M.T., Shahrabi T., Ramezanzadeh B. Production of an eco-friendly anticorrosion ceramic base nanostructured hybrid-film based on Nd (III)-C7H6N2 on the mild steel surface; Electrochemical and surface studies. Constr. Build. Mater., 2019, 221, 456–468. https://doi.org/10.1016/j.conbuildmat.2019.06.122

Guangzhi Zhang. The protection measures and regular pattern of hull corrosion. Chinese Journal of Ship Repairing. 2003. Vol. 16. Pp. 53-58. https://doi.org/10.4028/www.scientific.net/AMR.936.1091

Smith C., Siewert T., Mishra B., Olson D., Lassiegne A. (2004). Coatings for Corrosion Protection: Offshore Oil and Gas Operation Facilities, Marine Pipeline and Ship Structures. 334 р. URL: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication1035.pdf

Published

2025-11-25

How to Cite

LASTIVKA, O. ., & ISHUTKO, T. . (2025). Study of the influence of modifying additives on the formation of properties of thermoplastic compositions incorporating iron oxide precipitate. Ways to Improve Construction Efficiency, 1(56), 285–294. https://doi.org/10.32347/2707-501x.2025.56(1).285-294