Principles of configuring agent interactions in a complex labor environment of it projects

Authors

DOI:

https://doi.org/10.32347/2707-501x.2025.56(2).3-13

Keywords:

agent interaction, IT project, cognitive system, labor evironment, team dynamics, self-organization, informational transparency, adaptive management

Abstract

In the modern context of information technology development, the management of labor processes in complex IT projects acquires the features of self-organization and dynamic adaptation. The article examines the principles of configuring agent interactions within the labor environment of IT projects as a tool for enhancing the efficiency of team management. The agent-based interaction model makes it possible to consider each team member as an autonomous agent capable of making decisions, adapting behavior to the task context, and interacting with other elements of the system within a distributed environment.

Conceptual foundations have been developed for constructing the architecture of agent interactions, based on the principles of cognitive exchange, communicative coherence, flexible role distribution, and multilevel task management. It is determined that the key factor in the effectiveness of such interactions is the balance between agent autonomy and centralized process coordination. A systematic classification of agent configuration types is proposed: hierarchical, decentralized, hybrid, and cognitively adaptive, which differ in the level of information connectivity and the system’s response speed.

The study also investigates the impact of cognitive factors on the dynamics of interactions between agents, such as trust, intellectual compatibility, role specialization, and the ability for collective learning. A model for assessing the effectiveness of agent interaction is proposed, using indicators of performance, informational transparency, decision synchronization level, and team adaptability index. It is established that the configuration of agent connections directly determines the speed of decision-making, the coherence of actions, and the level of project innovation activity.

The results of the study have practical significance for building multi-agent IT team management systems, developing algorithms for adaptive resource allocation, and creating cognitive project management dashboards. The proposed principles can be used to optimize communication processes, reduce the risk of conflicts, and enhance the resilience of organizational structures under conditions of high labor environment complexity.

References

Wouter WL Nuijten, Bert de Vries. Reactive Environments for Active Inference Agents with RxEnvironments.jl. https://doi.org/10.48550/arXiv.2409.11087. URL: https://arxiv.org/abs/2409.11087.

Francesco Pacenza Reasoning in Highly Reactive Environments. In Proceedings ICLP 2019, arXiv:1909.07646. https://doi.org/10.4204/EPTCS.306.57. URL: https://arxiv.org/abs/1909.08260.

Rehman M. M. Agile Project Management: A Deep Dive into Scrum, Kanban, and SAFe. GETUS Communications Ltd, 2025. URL: https://www.linkedin.com/pulse/agile-project-management-deep-dive-scrum-kanban-safe-rehman-mmr--mmncflinkedin.com.

Leffingwell D. SAFe 6: The Scaled Agile Framework. Scaled Agile, Inc., 2023. URL: https://scaledagileframework.com/safe.

Вельчко В.О., Войнова С.В., Граньяк В.М. та ін. Нові інформаційні технології, моделювання та автоматизація. Тернопіль: ТНТУ, 2023. 202 с.

Preisler T., Renz W. Structural Adaptations for Self-Organizing Multi-Agent Systems. The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications (ADAPTIVE 2015). URL: https://www.researchgate.net/publication/274248803_Structural_Adaptations_for_Self-Organizing_Multi-Agent_Systems.

Хоменко О., Петренко Г., Рижакова Г., Петруха Н., Чуприна Ю., Малихіна О., Кушнір О. Сучасні інструменти та програмні продукти адміністрування будівельними організаціями в умовах трансформації операційних систем менеджменту. Управління розвитком складних систем. 2022. № 52. С. 113–125.

Субботін С.О., Олійник А.О., Олійник О.О. Неітеративні, еволюційні та мультиагентні методи синтезу нечіткологічних і нейромережних моделей: монографія / під заг. ред. С.О. Субботіна. Запоріжжя: ЗНТУ, 2009. 375 с.

Чуприна Ю.А., Петренко Г.С., Гриненко І.М., Поколенко В.О. Методологічна регламентація та аналітико-інформаційне забезпечення процесно-орієнтованого менеджменту в сучасній системі будівельного девелопменту. Управління розвитком складних систем. 2021. № 48. С. 125–134.

Shoham Y., Leyton-Brown K. Multiagent systems: algorithmic, game-theoretic, and logical foundations. Cambridge: Cambridge University Press, 2009. URL: https://surl.li/zinwpl.

Weiss G. (ed.). Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. Cambridge: MIT Press, 2013. URL: https://mitpress.mit.edu/books/multiagent-systems

Published

2025-11-25

How to Cite

DANILOV, S. . (2025). Principles of configuring agent interactions in a complex labor environment of it projects. Ways to Improve Construction Efficiency, 2(56), 3–13. https://doi.org/10.32347/2707-501x.2025.56(2).3-13