Tools for multi-criteria decision optimization in multiproject management
DOI:
https://doi.org/10.32347/2707-501x.2025.56(2).28-41Keywords:
multi-criteria optimization, multiproject management, Pareto optimality, evolutionary algorithms, compromise programming, fuzzy logic, adaptive strategy, decision supportAbstract
In today’s highly dynamic business environment and increasingly complex management processes, construction and engineering companies face the challenge of making decisions that must account for a wide range of interrelated criteria. Traditional approaches focused on a single objective – such as minimizing costs or shortening project durations – are becoming ineffective in complex multiproject systems, where each managerial decision has a multidimensional impact on overall performance.
Multi-criteria optimization provides a scientifically grounded framework for reconciling conflicting objectives by combining the flexibility of analytical methods with the precision of mathematical modeling. The integration of Pareto optimality principles, compromise programming, the Analytic Hierarchy Process (AHP), and evolutionary algorithms such as NSGA-II enables the generation of multiple alternative decision options that take into account both short-term operational needs and long-term strategic priorities of an organization.
The practical application of multi-criteria models in multiproject management contributes to the automation of project coordination processes, rational allocation of resources, and reduction of conflicts within corporate ecosystems based on ERP and PPM platforms. Such systems form the foundation for flexible portfolio management, where each project element is integrated into a unified information and analytical space.
The incorporation of cognitive analytics, machine learning, and fuzzy logic enhances the adaptability of management systems and their ability to respond effectively to environmental uncertainty. Multi-criteria optimization emerges as a core tool for building next-generation analytical management models that not only improve the accuracy and resilience of managerial decisions but also lay the groundwork for a transition toward predictive and analytical management in modern multiproject environments.
References
Arrow K. J. Social Choice and Individual Values. New Haven: Yale University Press, 1963. 214 p. URL: https://archive.org/details/socialchoiceindi0000arro
Alvarez-Campana, P., Villafáñez, F., Acebes, F., Poza, D. Simulation-Based Approach for Multiproject Scheduling Based on Composite Priority Rules. International Journal of Simulation Modelling. 2024. 23. 29-40. DOI:10.2507/IJSIMM23-1-667.
Odu Godwin Review of multi criteria optimization methods – theory and applications. IOSR Journal of Engineering, 2013. Vol. 3(10), pp. 01-14. DOI:10.9790/3021-031020114.
Воронін А.М., Зіатдінов Ю.К., Пермяков О.Ю., Вараламов І.Д. Багатокритеріальна оптимізація динамічних систем керування. Сучасні інформаційні технології у сфері безпеки та оборони. 2014. № 2. С. 38-48.
Bates, M.E. (2021). Advances in multi criteria decision analysis and multi objective optimization for sustainable water resources and sediment management. URL: https://escholarship.org/uc/item/33r7j9pw
Новаківський І.І. система управління підприємства в інформаційному суспільстві: дис. ... д-ра. екон. наук: 08.00.04. Львів, 2017. 494 с.
Deshpande А. Multi criteria decision making using reinforcement learning and its application to Food, Energy, and Water Systems (Fews) Problem. Dissertation, Purdue University, 2021. URL: https://docs.lib.purdue.edu/dissertations/AAI30505347/
Рижакова Г.М., Чуприна Ю.А. Формування будівельного кластеру у форматі державних інвестиційних цільових програм. Шляхи підвищення ефективності будівництва в умовах формування ринкових відносин. 2019. Вип. 40. C. 19-24. http://ways.knuba.edu.ua/issue/view/11913
Opricovic, S. Multicriteria Optimization of Civil Engineering Systems. PhD Thesis, University of Belgrade, 1998. 302 с. URL: https://www.scirp.org/reference/referencespapers?referenceid=1600129&utm
Чуприна Х.М., Чуприна Ю.А., Бородавко М.В., Грабчак Д.В.. Структурно-когнітивного моделювання процесів управління інтелектуалізацією будівельних підприємств. Формування ринкових відносин в Україні. 2020. № 5 (228). C. 89-98.
Ramezani B. P. Multi criteria performance evaluation and control in power and energy systems. PhD Dissertation, Clemson University, 2022. 220 p. URL: https://open.clemson.edu/all_dissertations/3212/
Lova, Antonio & Maroto, Concepción & Tormos, María. Multicriteria heuristic method to improve resource allocation in multiproject scheduling. European Journal of Operational Research. 2000. 127. 408-424. DOI:10.1016/S0377-2217(99)00490-7.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).